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FRICTIONAL FORCES AND COLLISION FREQUENCIES 

BETWEEN MOVING ION AND NEUTRAL GASES 

Peter Stubbe 
Laboratory for Space Sciences 

ABSTRACT 

Two different terms are used in literature for the frictional 
force between moving ion and neutral gases. It is shown how the 
corresponding collision frequencies have to be defined in order to 
keep both te rms  valid. An expression is derived for the momentum 
transfer collision frequency v 1  between ions and neutral particles 
as afunction of temperature and the relative flow velocity 1 v ,  - v n / ,  
The result indicates that for most practical applications vl,, may 
be considered as independent of I v i  - vn  I . However, for very high 
velocities, e.g. a convection flow from the magnetosphere into the 
ionosphere, this dependence may be significant. Numerical values 
for u ,,, are presented. In the case of collisions between ions and 
their parent neutral gases, laboratory values are used for the 
resonant charge exchange cross  section obtained for high energies, 
but a correction is made for the much smaller thermal energies in 
the temperature range typical for ionospheric conditions. This 
gives rise to an enhancement of the collision frequencies, compared 
with the values obtained from the uncorrected charge exchange 
cross  sections, the amount of which depends on the particle mass. 

... 
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FRICTIONAL FORCES AND COLLISION FREQUENCIES 
BETWEEN MOVING ION AND NEUTRAL GASES 

1. INTRODUCTION 

. 

The dynamic behaviour of the ionospheric plasma and atmospheric neutral 
gas can be described by the Navier-Stokes equation of hydrodynamics. This 
equation expresses the acceleration of a fluid in  te rms  of a pressure gradient 
force, a viscous force and the resultant of all external forces. One of the most 
important external forces is the frictional force between an ion gas and a 
neutral gas moving with different velocities. The frictional force can be ex- 
pressed in te rms  of the relative velocity between the ion and neutral gas and 
the number of collisions between ions and neutral particles. 

Two different expressions a r e  used in l i terature for the frictional force, 
both relating the frictional force to the collision frequency between ions and 
neutral particles. It is necessary, therefore, to define different collision fre- 
quencies in order to keep both expressions valid, One of the goals of the 
present work shall be to give the proper definitions for these collision frequencies. 

Collision frequencies between ions and neutral particles a r e  usually assumed 
to be independent of the relative flow velocity. It shall be investigated in this 
paper to which extent this assumption is correct.  

The frequency of collisions between ions and their parent neutral particles 
is greatly influenced by charge exchange processes. Charge exchange cross  
sections for all processes of atmospheric interest have been measured for 
energies far above the thermal energy range, and they have been extrapolated 
to thermal energies without any correction. In the present paper an attempt 
shall be made to correct the charge exchange cross  sections for small energies 
which must lead to an enhancement of the collision frequencies. 

2. EQUATION OF MOTION FOR AN ION GAS 

The Navier-Stokes equation, applied to an ion gas in the earth's atmosphere, 
reads as follows: 

dv - 
g r a d d i v y i  
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P i  = mass density of the ion gas 

pi = partial pressure of the ion gas 

v i  = ion velocity 

'vi = coefficient of viscosity 

- k = resultant external force per  unit volume. 

The external force k may be written a s  the sum of a gravity force, an 
electromagnetic force, a Coriolis force, a centrifugal force and a frictional 
force (ion drag force): 

g = acceleration due to gravity 

N i  = ion number density 

e = ionic charge 

- E = electric field strength 

- B = magnetic induction 

- Q = angular velocity of the earth 

- r = position vector, measured from the earth 's  center 

- k = external frictional force or  ion drag force. 

For  a practical application of Equations (1) and (2) to the earth 's  ionospherc 
the acceleration force, the internal friction force, the Coriolis force, and the 
centrifugal force may be omitted. 

3. FRICTIONAL FORCE AND COLLISION FREQUENCY 

Two different te rms  for k f  are in use in literature. Some authors (e.g. 
Dougherty, 1961; Kendall and Pickering, 1967: Kohl and King, 1967: Pr ies ter ,  
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Roemer and Volland, 1967) use the expression 

while others (e.g. Schlfiter, 1950; Chandra, 1964) use the expression 

p i n  = m i m n / m i  + m n  = reducedmass 

mi  = i onmass  

mn = neutral particle mass  

v .  i n  = number of collisions per second of one ion with the neutral particles 

-n v = neutral gas velocity. 

Since v is a frictitious quantity which merely has the dimension of a 
frequency, it can be defined so that either (3) o r  (4) a r e  valid. 

Two different definitions for vi,,  a r e  given in literature. According to 
Banks (1966a), the momentum transfer collision frequency is defined as 

Q( g )  = 2n j: (1 - cos X)b db = momentum transfer cross  section 

g = relative thermal velocity 

x = angle of deflection (see Figures 12 and 13) 

b = collision parameter (see Figure 14) 

3 



In order to find out how the frictional force te rm reads when we use v i  as 
defined by Equation (5), we refer to the momentum transfer equation provided 
by statistical plasma mechanics. After Burgers (1960), the frictional force in 
the terminology of this paper is given by 

or ,  inserting (5): 

- f  k = - N i  v i "  p in  ( v i  - v") 

Equation (7) is identical with (4). 

Dalgarno (1961), on the other hand, defines the collision frequency as 

- kT 
' i n  - m i  D i  

o r ,  when we insert  for the diffusion coefficient Di the expression given by 
Chapman and Cowling (1961): 

By comparison of (sa) with (6) we obtain 

k - f  - N i  v i "  m i  ( v i  - y n )  

Equation (9) is identical with (3). 

4 
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The numerical values for v i  n ,  given by Cowling (1945) and Dalgarno (1961 
and 1964), a r e  based on the defining Equations (8) or  (sa). Hence, when these 
collision frequencies are used, Equation (3) must be applied for k f .  On the 
other hand, the collision frequencies presented by Banks (1966b) and later on in 
this paper (paragraphs 5 and 6), are calculated by means of Equation (5). There- 
fore, these values have to be taken in conjunction with Equation (4). Thereby, 
the apparent discrepancy between the collision frequencies of Dalgarno (1964) 
on the one side and of Banks (1966b) on the other side is removed. 

The frictional force as  given by Equation (6) leads, when decomposed into 
the constituents of Equation (4), to an expression for the collision frequency 
which does not depend on the relative flow velocity I v i  - yn I . Such a dependency, 
however, should be expected, since the velocity distribution functions of the ion 
and neutral gas cannot only be influenced by a change in T, but also by a change 
in Ivi - y n I .  

We will derive here  an expression for k, leading to a collision frequency 
which shows a dependence on I vi - ln I .  Our basic assumption is that the ve- 
locity distributions of the ion and neutral gas are Maxwellian distributions, 
displaced by the drift velocities vi  and vn, respectively (Smith, 1964): 

dN -m;/2kT ( ~ ~ - 1 ~ ) ~  
d3 si 

N i  

- c i  9 - n  c = thermal velocities. 

The result of our calculations, which are presented in the appendix, is: 

5 



By comparison with (4), the momentum transfer collision frequency is 
given by: 

r m  #- 

For vi  yn and Ti  = Tn Equation (11) is identical to (5). We will discuss 
this formula later (paragraph 5). In the following we must distinguish between 
ions in unlike gases and ions in their parent gases. In the f i rs t  case, the 
momentum transfer cross  section is determined by electrostatic interactions, 
while in the second case charge exchange plays a predominant role. 

4. MOMENTUM TRANSFER CROSS SECTION FOR IONS MOVING 
IN THEIR PARENT NEUTRAL GAS 

The momentum transfer section Q was defined as 

Q(g)  = 277 ~ o m ( l - c o s  X)bdb = 477 j: c o s 2 9 b d b  

X, 9 and b a r e  defined in Figures 12,  13 and 14. 
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Due to electrostatic interaction forces, which are described later, the in- 
tegrand is greater than zero for all finite values of b and g, but, for given g and 
increasing b, it converges fast enough to zero to guarantee the convergence of 
the above integrals. 

When the ion gas is embedded in its parent neutral gas,  the value of Q is 
much less determined by electrostatic interactions than by charge exchange 
processes of the type 

where X and Y are particles of the same neutral gas species. After Holstein 
(1952), the effect of charge exchange processes on the momentum transfer cross  
section can be described as follows: 

When the particle trajectories are linear, a critical collision parameter b c  
with the following features can be defined: For b < bc  the charge exchange 
probability Pex  is a rapidly changing function of b, oscillating between 0 and 1 
and having an average of 1/2. For b > bc , P e x  decreases rapidly with increasing 
b. Therefore, on the average, every second collision with b < b c  leads to a 
charge exchange process. Let us consider a particular impact, in the f i rs t  
instance without charge exchange (Figure l a ) ,  then with charge exchange (Fig- 
u r e  lb). In the first case the ion is deflected by X I ,  

Figures l a  and l b  

in the second case (since X and Y a r e  of the same species) by ;y2 L -  TI - x1 (i.e. 
cos x2 = -cos x l ) .  Hence, on the average, for b c bc  the integrand (1 - cos x; 
is equal to b. Therefore, i f  we neglect the very small contribution of Pr  for 
b > b c ,  we can describe the net result of charge exchange processes in the fol- 
lowing manner: Charge exchange processes between ions and their parent 
neutral particles influence the momentum transfer so as i f  all collisions with an 
impact parameter b smaller than the critical impact parameter bc occur with a 
deflection angle of 9 0 9  Thus, the momentum transfer cross  section can be 
written as 

1) 

' 

(13) 
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The charge exchange cross  section S e x ,  which has been measured for many 
processes of atmospheric interest, is defined as the integral 

where dq is a differential c ross  section and P e x i s  the charge exchange probability 
related to dq. Since P, xis a function of b only, S e x  can be written as 

Omitting the small contributions of the integrand for b > b c ,  we get 

Therefore, Q( g )  and Sr are related by 

Laboratory measurements (e.g. Stebbings, Smith and Ehrhardt, 1964) as well 
as theoretical studies (Knof, Mason and Vanderslice, 1964) showed that for 
energies above 1 eV, when the trajectories are approximately linear, S e x  and the 
relative kinetic energy E = (pi, ,  , 2 ) g 2  are connected by 

’ r x  
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where C, and C, are constants. In order to evaluate collision frequencies or  
diffusion constants for ions (e.g. Banks, 1966b and Knof et al., 1964), the authors 
used the unmodified Equation (17). However, at thermal energies characteristic 
of atmospheric conditions, the curvature of the particle trajectories due to 
long range attractive forces should have a marked influence on Se and Q. We 
will therefore make an attempt to correct the charge exchange cross  sections 
for small energies. The corrected values of the charge exchange cross  section 
and the critical collision parameter shall be denoted by SelX and bc' , respectively, 
to distinguish them from the uncorrected values, given by (15) and (17). 

While the task to relate bc' to bc for a given relative velocity g can be ex- 
actly solved, an exact relationship between SeIx and bc' can be found only when 
all branches of the charge exchange interaction potential are known, but even 
then it is a very difficult problem. We will assume that SefX and bc' are related 
in the same manner as Sex and bc: 

This assumption is in agreement with a proposal by Holstein (1952, p. 835). 
Equation (15a) would be correct to the same extent as (15) i f  the transformation 
from b ' to b were strictly linear. The meanings of b ' and b are explained in 
Figure 2. 

Figure 2 

When bc' is known, Q is given by 

or ,  because of (15a), by 
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We are left now with the problem to calculate cos2 9 as a function of b '  and 
g and bc' as a function of bc and g. 

We assume a long range interaction potential between an ion and a neutral 
particle of the form (e.g. McDaniel, 1964) 

U ( r )  f m  -0) for 

The fourth order te rm is due to dipole interactions, the sixth order te rm 
to quadrupole interactions. cr is the sum of the gas kinetic radii of the particles. 
A can be expressed in t e rms  of the polarizability ri of the neutral particle. 

It would be more realistic to describe the repulsive potential by a te rm of 
the form C/r  1 2 ,  but since no value. for C a r e  available, this would only impede 
the calculations without yielding a higher accuracy. The potential given by 
Equation (18) is illustrated in Figure 3. 

Figure 3 

Using the symbols defined by Figure 4 and applying the conservation laws 

Figure 4 

for energy and angular momentum, we obtain the relations 
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w can be expressed as 

i- and 4 stand for the time derivatives dr/dt and d&'dt, respectively. Con- 
sidering the identity 

i and daddr are given by 

By means of (22) we can immediately obtain an expression for 9: 

9 ( b ' ,  g) b '  jbm (1 - - b f 2  - ___ 2U(r))-1'2 - cl; 
r 2  p g 2  

b is the minimum distance between the two particles for given b '  and g.  If 
rpCA (PCA = point of closest approach) is defined as the greatest nullpoint of 
; ( r ) ,  b is given by (see Figure 5) 

for r P C A  1 
b = {"l 

for rpCA i~ 

11 



For sufficiently small values of b '  , however, there exists no nullpoint of 

Figure 5 

k 2  ( r )  , In this case, b is simply given by 

If b is  greater than a, i.e. b = r P C A ,  the integrand in Equation (34) has a 
singularity for r b. In order to remove this singularity and to make the range 
of integration finite, we change the variables by using the transformation (Mason 
and Schamp, 1958) 

b 
r (25) 
- s i n b  

We thus obtain for 19: 

The critical collision parameter bo' which has the property that for b '  < bo' 
k 2  ( r )  has no nullpoint, is of significance for the determination of bc' . A s  we 
read off from Figure 5, bc' is given by the condition 

i f  bc  2 r P C A  (bo') and by 

i f  bc  < r p C A  (bof) . Now all formulae necessary for a calculation of Q( g )  and 
SelX ( g )  have been provided. Numerical resul ts  are presented in the next 
paragraph . 

12 
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5. NUMERICAL VALUES FOR MOMENTUM TRANSFER CROSS 
SECTIONS AND COLLISION FREQUENCIES FOR IONS IN THEIR 
PARENT NEUTRAL GASES 

Experimental values of S e x  ( g )  a r e  available for all processes of at- 
mospheric interest. We will base our calculations on the values for S e x  and 
77 given in Table 1. The values for 77 have been taken from Banks (1966b). 

Table 1 

Charge Exchange Cross Sections and Polarizabilities of Neutral 

(1962); (3) Cramer and Simons (1957); (4) Knof et al. (1964); 
(5) Amme and Utterback (1964). 

Particles. Sources: (1) Stebbings et al. (1964); (2) Fite et al. 

Process 

o+ + o  + o+o+ 

H + + H  - H + H +  

Hef + H e  + H e + H &  

N + + N  - N + N +  

0; + o ,  - 0, +o;  

N: + N ,  + N, + N l  

0.89 

0.67 

0.21 

1.13 

1.60 

1.76 

se1L2 cm) 

5.95 - 0.63 log,, E(eV) 

7.60 - 1.06 log,, E(eV) 

5.25 - 0.74 log,, E(eV) 

5.53 - 0.46 log,, E(eV) 

5.37 - 0.54 log,, E(eV) 

7.36 - 0.68 log,, E(eV) 

~~ ~ 

Source for S e x  

Using the formulae derived in paragraph 4, Q( g )  and SeIx ( g )  have been 
calculated numerically with the help of an electronic computer. Since B (de- 
fined by Equation (18)) is practically unknown, a set of values for B, ranging 
from 0.5 to 2.0 cm has been used. The result  was that the influence of 
the sixth order potential t e rm is completely negligible, since in no case was 
the deviation in Q( g )  caused by this term more than 0.5%. Therefore, all 
further calculations have been carried out with B = 0, Le. for a pure fourth 
order potential law. 

Results for Q( g )  and SCIx ( g ) ,  compared with S e x  ( g )  , for the processes 
0' + 0 - 0 + 0' and H+ + H + H + Ht are  shown in Figures 6 and 7. 

13 
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Figure 6 

Figure 7 

The numerical values for Q( g )  have been used to claculate the momentum 
transfer collision frequency vi,, after Equation (11) for the processes listed in 
Table 1. Figure 8 shows v i "  for the most important charge exchange collision 
process in the ionosphere, namely 0' + 0 + 0 + O + ,  as a function of the re- 
duced temperature T, for ] vi - v,, I = 0. In order to indicate the effect of 
electrostatic interactions, v i n  has also been calculated for the uncorrected 
momentum transfer cross  section Q = 2 S e x ,  which would be the case i f  no 
electrostatic interactions would be present. 

Figure 8 

Since the difference between Q and 2Sex increases with decreasing velocity, 
the influence of electrostatic interactions is conspicuous only for low tempera- 
tures (below 1000%), and is more noticeable for heavier particles because the 
mean thermal velocity is proportional to m- li2 . For the process 0; + 0 ,-+ 0, + O;, 
for instance, v i  n ,  calculated with the exact Q( g )  , is greater than v i  for Q = 2S, 
by 39% for 400°K and 17% for 1000°K. On the other hand, the corresponding num- 
bers  for  the process H+ + H + H + H +  are 2.3% and 0.4%. 

In the temperature range 500°K 5 T, 5 3000°K the collision frequency ui ,, for 
I vi  - yn 1 = 0, as a function of T,, can be approximated by the following expres- 
sions, when the neutral particle number density is measured in the unit cm- 3: 

v ( O + ,  0) = 1.86 lo-' (T,/1000)0.37 n(0)  sec-' 

v(H+, H) = 12.03 - l o - '  (T,/1000)0.38 n(H) sec-'  

v(He+, He) = 2.92 lo-' (T,/1000)0.37 n(He) sec- '  

v (N+,  N) = 1.75 lo-' (T,/1000)0.34 n(N) sec-' 

v ( O i ,  0,) = 1.17 lo-' (T,/1000)o.28 n(0,)  sec-' 

v ( N i ,  N,) = 2.11 * lob9 (T,/1000)0.38 n(N,) sec-' 

These values can be used to calculate the ambipolar diffusion constant Da for 
an electrically neutral electron-ion gas in the ionosphere, which is given by 

14 
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In the F2 region, where 0' and 0 a re  the major ionic and neutral constituents, 
D, can be written as 

looo 0 . 3 7  ( T ~  + T ~ )  s i n 2  I 
n(O> 

Da 0.55 10l6 (T) 

In the exosphere, where Hf and H are  predominant, Da is 

a n 2  sec-' 

v i n  as a function of lyi - I[, I for the processes 0' + 0 - 0 + 0' and H t  + H - H + Ht is shown in Figures 9 and 10. When we consider diffusional flows, 
electromagnetic drifts  or neutral gas winds in the upper atmosphere and 
ionosphere, I v i  - v I should not exceed about 300 m/sec. -n 

Figure 9 

Figure 10 

Therefore, when applied to these mechanisms, v i  may be considered as 
independent of 1 yi  - yn 1 .  However, for particle flows from the magnetosphere 
into the ionosphere, as proposed by Axford and Hines (1961), this dependence 
may be of significance, since the plasma convection velocity is expected to be 
of the order of kilometers per second. 

6. NUMERICAL VALUES OF COLLISION FREQUENCIES FOR IONS 
IN UNLIKE: NEUTRAL GASES 

For  reasons of completeness, collision frequencies for ions in unlike neutral 
gases are also presented, although the basic studies in this field have been car- 
r ied out more than six decades ago by Langevin (1905) and later on by Has& 
(1926). Langevin and Has& give an expression for the ion mobility K which', 
using the terminology of this paper, can be written as 

15 



where A(h) , X being defined as 

L'2 

e A =  

is given by Has& (1926, Table 111). A is not identical with the quantity defined 
by Equation (18). Using Equations (l), (2), (4) and taking xn = 0, K and v h  are 
found to be related by 

F ( h )  = f i /A(A) is shown in Figure 11. 

Figure 11 

Since g, the sum of the gas kinetic particle radii, is not h o w n  well enough, 
the usual method is to take the limiting value F( 0 ) ,  i.e. for vanishing CT or in- 
finite 71, instead of the correct value F ( h ) .  This leads to the approximation 

L'2 

I/ I" 6 . 9 4 ( E )  N" 

We must realize, however, that the values obtained from Equation (31) can 
easily be wrong by about 20% for temperatures below 2000°K and by more than 
this for higher temperatures. Especially the temperature dependence of uin is 
not correctly described by the approximation (31). For A < 0.6 the collision fre- 
quencies decrease with increasing temperature, while for A > 0.6 the opposite is 
true. For A > 1.2 the collision frequencies approximately follow a T"2 -law. 
Assuming T = 500°K and q = 

cm. u. after Equation (31) is based on the defining Equation (5). The 
defining Equation (8a) would yield 

cm3,  a value of A 2  1.2 is adopted for CT? 4 

i n  
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Although momentum transfer collision frequencies can simply be evaluated 
from Equation (3l) ,  we will give some numerical values for  the most important 
collision processes in the ionosphere: 

I -  

v(o+. O ~ )  = 1.00 10-~ n(O,) 

v (Ot ,  N2)  = 1.08 lo-' n(N,) 

v(Ot ,  H) = 2.19 loc9 n(H) 

g ( H t ,  0) = 2.52 lo-' n(0) 

v(NOt, 0,) = 0.83 lo-' n(0,) 

v(NOt,  N2)  = 0.90 lo-' n(N2) 

v(NOt, 0) = 0.76 lo-' n(0)  

~ ( 0 , ' ~  N,)  = 0.89 lo-' n(N2) 

~ ( 0 : ~  0 ) = 0.75 lo-' n(0)  

sec-l 

sec- 

sec- 

sec-l 

sec-l 

sec-l 

sec-' 

sec-l 

sec-' 

A s  mentioned before, the collision frequencies defined by (5) and (sa) are 
fictitious quantities, that is, they are quantities having the dimension of a fre- 
quency and were introduced merely for reasons of convenience. When two 
particles approach each other so closely that they are separated only by short 
range repulsive forces or ,  in other words, when two particles have a direct 
contact, we will call this a "real" collision. According to this definition, the 
number of real collisions per second, u R ,  is given by (Stubbe, 1966) 

where u o  and vo are abbreviations standing for the expressions 

17 



In terms of A, defined by (29), uR can be written as 

For temperatures below about 2000"K, (32) and (32a) can be approximated by 

1/ 2 

"R = 27r($) N n  

By comparison of (31), (31a) and (32b) we see that uR l ies between u I n  after 
(3la) and vin after (31). 

8. SUMMARY 

a) The relationship between the frictional force and the collision frequency 
between ion and neutral gases is studied. Proper definitions a r e  given for the 
collision frequency to f i t  the expressions used for the frictional force. 

b) An expression is derived for the momentum transfer collision frequency 
vin as a function of the relative flow velocity I vi  - yn [ . It is shown that for most 
practical applications uin may be considered as independent of 1 -vi - yn 1 , but 
that for velocities in the km/sec range, as they may be expected in convection, 
flows from the magnetosphere, this dependence is significant. 

c)  Numerical values of u i n  for the most important collision processes in 
the ionosphere a r e  presented. In the case of ions in their parent neutral gases, 
resonant charge exchange is of great influence on the collision frequencies. 
Laboratory values a re  used for  the charge exchange cross  sections, although 
obtained for higher energies, but an approximate correction is made for thermal 
energies in order to take into account the effect of curved particle trajectories 
on the charge exchange cross  section. 

18 
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APPENDIX 

DERIVATION OF EQUATION (10) 

The frictional force between two gases is the result  of the momentum trans- 
fer  between the colliding particles. We introduce the following quantities: 

si , cn = ion and neutral particle velocity before the collision 

ci ' Y &  ' = ion and neutral particle velocity after the collision 

g = si - c relative velocity before the collision 

g' = c.' - c ' relative velocity after the collision 

- I = m i  si ion momentum before the collision 

- 1;' = m i <  ion momentum after the collision 

-17 

-1 -ll 

AI, = r;' - Ii momentum transfer 

Using the conservation law for momentum, it can easily be derived that 
Nin is given by 

The conservation law of energy which holds for elastic collisions gives 

In order to determine g' - g we will distinguish between direct collisions 
(direct contact of the colliding particles) and indirect collisions (no direct con- 
tact of the particles, but curved orbits due to long range electrostatic forces). 

a) Direct Collisions: Under the assumption that no angular momentum is trans- 
ferred during the collision, the orbit is  symmetrical to the radial unit 

2 1  



4 

Figure 1 2  

vector gr . According to Figure 12,  we therefore obtain: 

- 
g' - g - Ig' -gl - g r  

Ig' - g /  E 2 g c o s Q  

o r  

b) Indirect Collisions: According to Figure 13: 

- 
g' - g - - lg' - g /  * e 

Ig' -gl = - 2 g c o s Q  

- r  

Figure 13 

In both cases we get the same result ,  namely 

g' - g = 2g c o s Q g r  (3 9) 

We now introduce a Cartesian coordinate system (Figure 14) and we es- 
pecially assume that the relative macroscopic velocity vi  - yn has the direction 
of the negative z-axis. In this case we are interested only in the z-component 

Figure 14 

of A&,, since, on the average, all other components cancel out because of the 
complete symmetry about the z-axis. 
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It can easily be shown that 

Hence, the z-component of the momentum transferred from an ion to a neutral 
particle for any particular collision is given by 

( A I  in ) and the frictional force k, are connected by 

dvi is the number of collisions of one ion per  second impinging on the differential 
c ross  section dq db - da (see Figure 14) and occurring in the velocity range 
g * - g + d g  and the angular range H * * * 0 i- dt!. According to this definition, dv is . 
given as the product of the relative velocity g, the cross  section dq, and the num- 
ber of neutral particles zn per unit volume having a velocity between g and g + dg 
and being in the angular range between d and H t dB , related to the particular ion 
under consideration. 

b 

In order to determine an, we assume that the ion gas and the neutral gas 
have Maxwellian velocity distributions, displaced by the velocities vi and yn , 
respectively. Furthermore we assume, in the first instance, that the ion tem- 
perature and the neutral gas temperature are equal. 

2 3/ 2 
-mi/2kT(ci-xi) d3 ci 

N i  

2 3/ 2 

d3 c -n 
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We multiply the distribution functions with each other and introduce a new 
velocity 

Cl + mn Cn 
v =  m i  + mn 

After  some simple manipulations we get: 

The integration over can simply be carried out yielding 

When we drop the restriction T ~ T I  = Tn we obtain the same result  provided 
that we replace T with the reduced temperature T, defined by 

Using Figure 14 and defining 

i-L i n  
x =  kT, / V i  - V n I  

24 
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we obtain 

d 3 g  = g 2  s i n @ d @ d + d g  

Inserting these expressions into (45), carrying out the integration over 
+ ( O  24 q 2 n )  and dividing by Ni , we get for dNn: 

d v i  is given by 

- 

dvi  = g * b * dNn * db * da 

Hence, after integrating over a(0 L a  271): 

dkf - e Z  4npin N i  g 2 b c o s 2 8 c o s  @zn db 

25 
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i 

9 is a function of the collision parameter b and the relative velocity g. We 
introduce a velocity dependent collision c ross  section Q( g )  defined by 

where Q(g) is identical to the momentum transfer c ross  section 

commonly used in literature since, according to Figures 1 2  and 13, the deflec- 
tion angle x is related to 9 by means of 

2 C 0 S 2 9  = 1 - cos x 

We integrate over e(0 56' I n) and over b(O <-b a) in Equation (49), insert  
Q( g )  given by (50), consider the relationship 

V i  - V n  
- e - -  

- 2  / V i  - V n /  

and integrate over g(0 I g  < a) to get the final result  
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FIGURE CAPTIONS 

Figure l a ,  b. Left side ( A ) :  Collision without charge exchange 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

Figure 12. 

Figure 13. 

Figure 14. 

Right side (lb): Collision with charge exchange 

Illustration of some quantities used in the text 

Interaction potential U as a function of the particle distance r 

Illustration of some quantities used in the text 

;* (; = radial velocity) as a function of the particle distance r 
for  three different collision parameters b' 

Q, 2SeIx and 2SeX as a function of the relative velocity g for the 
process O+ + o + o + O +  

Q, 2Se: and 2Sex as a function of the relative velocity g for the 
process H + +  H - H +  H+ 

v(O+,  O)/n(O) as a function of the reduced temperature T, for 
I vi - 41, I = 0. Upper curve for the momentum transfer cross  
section Q after Equation (16a), lower curve for the uncorrected 
momentum transfer cross section 2Sex 

v(O+, O)/n(O) as a function of lyi - y, 1 for three different 
temperatures 

v(H+,  H)/n(H) as a function of Iyi -yn I for four different 
temperatures 

F as a function of A 

Relation betweeng' - g and 9 for direct collisions 

Relation between g' - g and 9 for indirect collisions 

Illustration of some quantities used in the text 
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Figure 14. I l lustrat ion of Some Quantities Used in the Text 
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